
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 12, Issue 04, April 2025

18

Impact of AI on Software Quality Assurance and Testing Jobs
[1] Rushil Kumar, [2] Sahitya Pandey, [3] Gajender, [4] Er. Sahil Bhardwaj, [5] Shaswat Pandey, [6] Divyanshu Agarwal

[1] [2] [3] [4] [5] [6] Department of Computer Science and Engineering, Chandigarh University, Mohali, India

Emails ID: [1] rushilkumar13@gmail.com, [2] sahitya67kty@gmail.com, [3] mandiwalgajender0001@gmail.com,
[4] sahilbhardwaj20@gmail.com, [5] shaswatpandey77@gmail.com, [6] divyanshuagarwal94154@gmail.com

Abstract— The adoption of Large Language Models (LLMs) in software quality assurance is driving significant changes in testing

practices and professional roles. This paper explores the current applications of LLMs in test case generation, bug analysis, and

program repair, assessing their technical performance and impact on human testers. While LLMs can automate 40-55% of routine

testing tasks, they serve best as augmentative tools rather than full replacements. As software testing shifts toward strategic

oversight, professionals must develop AI literacy and prompt engineering skills. This study provides both theoretical insights and

practical implementations to support the integration of LLMs in quality assurance.

Index Terms— Large Language Models, System Testing, Test Case Generation, Unit Testing.

I. INTRODUCTION

Software Quality Assurance (QA) and testing are essential

aspects of the software development lifecycle, responsible

for ensuring applications adhere to quality standards prior to

their deployment. In recent years, advancements in artificial

intelligence (AI) have significantly transformed various

industries, with software development and testing being

particularly impacted by these innovative technologies. The

adoption of advanced AI systems, which possess the

capability to learn, adapt, and perform intricate testing

scenarios, is fundamentally altering the field of software

quality management. This shift challenges traditional

methods and creates substantial opportunities as well as

disruptions for professionals working in this area.

Historically, software testing has followed a structured

process of verification and validation, including manual

testing, automated script execution, performance evaluations,

and compliance checks. Over time, the skill sets required

from QA specialists have evolved significantly. Today's

successful QA professionals are expected to have expertise in

programming languages, system architecture concepts,

database technologies, and specialized testing frameworks.

Additionally, beyond technical proficiency, effective quality

engineers typically exhibit strong analytical skills, clear

communication abilities, and critical thinking capabilities.

The emergence of Large Language Models (LLMs) like

ChatGPT, Codex, and GPT-4 has introduced new capabilities

that extend beyond traditional automation approaches.

Unlike conventional test automation, which executes

predefined scripts according to programmed instructions,

AI-enhanced testing systems can demonstrate adaptive

behaviors, pattern recognition capabilities, and

self-optimizing characteristics that more closely emulate

human cognitive processes. These technologies leverage

various AI disciplines including machine learning, natural

language processing, computer vision, and predictive

analytics to transform how quality verification activities are

conceptualized and implemented.

II. LITERATURE REVIEW

A. Evolution of LLMs in Software Testing

The application of Large Language Models in software

testing has experienced exponential growth, with research

publications increasing from 11 papers in 2020 to an

impressive 109 papers in 2024 (according to scopus). This

surge represents the rapidly evolving landscape of

AI-powered testing methodologies and their increasing

adoption within both academic research and industry

practice. Analysis reveals that LLMs have been effectively

employed in both the mid to late stages of the software testing

lifecycle, with significant applications in test case

preparation, bug analysis, debugging, and program repair [1].

The adaptation of LLMs for software testing has

undergone several evolutionary phases. Early approaches

primarily utilized pre-training or fine-tuning schemas to

prepare models for specific testing tasks. For instance,

pre-trained LLMs with focal methods and asserted statements

were used to enable stronger foundational knowledge of

assertions, then were fine-tuned for test case generation [2].

With the advancement of more sophisticated models like

GPT-4 and ChatGPT, researchers shifted toward prompt

engineering approaches, using zero-shot and few-shot

learning strategies to guide LLMs without the need for

specialized training.

B. LLM Application in Testing Tasks

1) Unit Test Case Generation

Traditional unit test generation techniques leverage

search-based, constraint-based, or random-based strategies to

generate test suites with the primary goal of maximizing

coverage. However, the coverage and meaningfulness of

traditionally generated tests often fall short of requirements.

Recent advancements in AI-powered testing have introduced

several approaches using LLMs for generating more effective

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 12, Issue 04, April 2025

19

unit test cases.

Performance varies significantly across different datasets

and models. On the HumanEval benchmark, Codex achieved

78% correctness with high coverage (87% line coverage,

92% branch coverage), while on the more complex SF110

benchmark with real-world projects, LLMs demonstrated

considerably lower performance (2% coverage). This

disparity highlights both the potential and limitations of

current LLM applications in unit test generation.

2) Test Oracle Generation

Test oracles, particularly test assertions, represent a critical

component distinguishing unit test cases from regular code.

AI approaches for generating effective test assertions have

evolved significantly, from early pre-training and fine-tuning

schemas to more recent prompt engineering techniques. The

performance has improved from 17% exact match rates with

early RNN-based approaches to 76% with modern

LLM-based methods that automatically retrieve code

demonstrations similar to the task at hand.

3) System Test Input Generation

LLMs have been applied to generate system test inputs

across various software types, with particular emphasis on

mobile applications, deep learning libraries, compilers, and

SMT solvers. For mobile app testing, LLMs were used to

intelligently generate semantic input text according to GUI

context and formulated mobile GUI testing as a Q&A task

[3]. For testing deep learning libraries, both generative and

infilling LLMs were usde to generate and mutate

valid/diverse input DL programs for fuzzing [4].

4) Bug Analysis and Debugging

AI-powered approaches for bug analysis and debugging

include unified debugging frameworks, self-debugging

systems, and bug reproduction tools. A unified

Detect-Localize-Repair framework based on LLMs was used

for debugging, which determines whether code snippets are

buggy, identifies buggy lines, and translates buggy code to

fixed versions [5]. Also, self-debugging can teach LLMs to

perform rubber duck debugging, identifying mistakes by

investigating execution results without human feedback [6].

5) Program Repair

Program repair represents one of the most extensively

studied areas for applying AI to software testing. Approaches

range from single-line bug repairs to multiple-line bug

repairs involving complex semantic understanding and

program refactoring. Performance varies significantly across

different benchmarks and models, with success rates ranging

from 22% to 97.5% for simpler bugs but dropping

significantly for complex programs involving multiple

dependencies and functionalities.

C. Impact on Testing Roles

The integration of Large Language Models (LLMs) into

software quality assurance is significantly reshaping

workforce demands, job roles, and the skills necessary within

the field. Research indicates that while certain testing

jobs—especially those involving routine, repetitive

tasks—are at higher risk of disruption, roles requiring

emotional intelligence, creativity, and strategic insight are

less likely to be fully automated.

This shift in skills goes beyond merely technical expertise;

it also involves fundamental changes in work practices and

cognitive approaches. As LLMs increasingly handle tasks

related to defect detection and test execution, human QA

engineers will need to shift their focus towards strategic

quality planning, exploratory testing that leverages creative

thinking, ethical management of automated systems, and

advocating for quality within development teams.

Simultaneously, new specialized roles are emerging that

concentrate on developing, implementing, and managing

AI-driven testing frameworks. Economically, these

transformations have uneven impacts across the QA

profession—routine testing activities face downward wage

pressure and potential job consolidation, whereas specialized

positions focused on AI implementation and strategic quality

management are experiencing growing demand and higher

compensation.

III. SYSTEM DESIGN

A. Impact on Human Effort Reduction

Table Ⅰ: Impact on Human Effort Reduction

Testing Activity

Estimated

Human Effort

Reduction

Key Factors

Unit Test Generation 60-75%

High accuracy for

standard methods;

still requires human

review for complex

logic and

domain-specific

validations

Test Oracle

Generation
50-65%

Good at standard

assertions but may

miss subtle business

rules

System Test Input

Generation
40-60%

Effective for

generating diverse

inputs but may not

fully understand

complex domain

constraints

Bug Analysis 30-50%

Can quickly identify

common issues but

may struggle with

complex,

interconnected bugs

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 12, Issue 04, April 2025

20

Testing Activity

Estimated

Human Effort

Reduction

Key Factors

Program Repair 25-45%

Capable of fixing

simple to moderate

bugs; complex bugs

still require

significant human

expertise

Test Scenario

Generaion
45-65%

Strong at extracting

scenarios from

requirements but

may miss implicit

requirements

B. Automated Unit Test Generation with LLMs

Fig. 1. Automated Unit Test Generation with LLMs

C. Automated Bug Analysis and Repair

Fig. 2. Automated Bug Analysis and Repair

The combined implementation of these LLM-based testing

tools could reduce total human effort in the testing lifecycle

by approximately 40-55%. This estimate is based on the

current capabilities of state-of-the-art LLMs and the specific

implementations demonstrated in this paper.

It's important to note that these reductions represent the

automation of routine aspects of testing rather than the

complete replacement of human testers. The most effective

application of LLMs in software testing appears to be in a

collaborative human-AI paradigm, where LLMs handle

repetitive tasks while human testers focus on more complex,

strategic, and creative aspects of quality assurance. It's worth

emphasizing that these efficiency percentages vary

significantly across different domains and application

contexts. For example, web application testing shows higher

automation potential (approaching the upper bounds of the

estimates) compared to embedded systems or safety-critical

applications, where LLM efficacy remains more limited.

The primary basis for these percentages comes from

analyzing the performance metrics reported in the surveyed

literature. For example:

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 12, Issue 04, April 2025

21

1) For Unit Test Generation (60-75%), the percentages

reflect findings from studies report correctness rates

between 41% and 78% on different benchmarks, and

coverage rates of 87-92% for standard methods, but

significantly lower (2%) for complex real-world

applications [7].

2) For Test Oracle Generation (50-65%), these

estimates were informed by studies showing

improvement from 17% exact match rates in early

approaches to 76% in recent LLM-based techniques

[8].

3) For Program Repair (25-45%), the ranges align with

findings from studies that showed success rates ranging

from 22% on complex datasets to 97.5% on simpler

benchmarks (as summarized in the literature review

section).

D. Analysis of Implementation Complexity

The code demonstrations provided in the paper illustrate

the complexity of implementing these LLM-based testing

tools. By analyzing what aspects of each testing task can be

fully automated versus what still requires human

intervention, we can estimate effort reduction:

1) The LLMTestGenerator class demonstrates that while

test generation can be automated, the validation and

correction of generated tests still require human

expertise, supporting the 60-75% estimate.

2) The LLMBugRepair implementation shows that

simple to moderate bugs can be identified and fixed

automatically, but complex bugs with interconnected

dependencies would still require human intervention,

supporting the 25-45% estimate.

E. Domain Expert Insights

The percentages also reflect typical industry patterns

where:

1) Routine, well-defined tasks see higher automation

potential (hence unit test generation at 60-75%)

2) Tasks requiring domain understanding or complex

reasoning show lower automation potential (hence

program repair at 25-45%)

IV. CONCLUSION

This research has examined the impact of Large Language

Models on software quality assurance and testing, revealing a

technological shift that is redefining both testing practices

and professional roles. Our analysis of current literature and

practical implementations leads to several key conclusions:

A. Technical Capabilities and Limitations

LLMs have demonstrated significant capabilities in

automating routine testing tasks, particularly in unit test

generation, test oracle creation, system test input generation,

bug analysis, and program repair. Performance varies across

tasks and datasets, with LLMs showing impressive results on

benchmark datasets (e.g., 78% correctness with 87-92%

coverage on HumanEval) but struggling with complex

real-world applications (e.g., 2% coverage on SF110).

The technical limitations of current LLM applications

include:

1) Coverage limitations: Current approaches struggle to

achieve comprehensive coverage, particularly for

complex, real-world software systems with numerous

dependencies.

2) Test oracle problem: Despite advancements, generating

accurate test oracles remains challenging, especially

for complex behaviors.

3) Real-world application: The performance gap between

benchmark datasets and complex real-world

applications indicates challenges in practical

implementation.

B. Impact on Testing Roles

The integration of LLMs into software testing workflows

is transforming the profession in several

ways:

1) Role Transformation: Testing roles are shifting from

execution-focused activities to more strategic, creative,

and oversight responsibilities. Routine testing positions

focused on manual execution are experiencing the most

immediate disruption, while roles requiring strategic

thinking and domain expertise remain less affected.

2) Skills Evolution: Testing professionals need to develop

hybrid skill sets that combine traditional quality

assurance knowledge with AI literacy, prompt

engineering capabilities, and strategic thinking. The

ability to collaborate effectively with AI systems is

becoming a valuable professional asset.

3) Economic implications: These transformations

manifest unevenly across different segments of the

quality assurance profession, with routine testing

activities experiencing wage pressure and position

consolidation, while specialized roles in test

architecture, implementation, and quality strategy

command increasing premiums.

C. Future Outlook

The interaction between Large Language Models (LLMs)

ans human testers is expected to evolve into a collaborative

affiliation rather than a complete replacement. LLMs

demonstrate exceptional proficiency in automating repetitive

and pattern-driven testing tasks, whereas human testers

contribute essential creativity, contextual insights, and

strategic analysis required for thorough software quality

assurance.

Future advancements in this domain are expected to

include:

1) Investigating the application of LLMs during early

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 12, Issue 04, April 2025

22

stages of the testing lifecycle.

2) Developing advanced techniques for addressing

non-functional testing requirements.

3) Combining LLM capabilities with traditional testing

methods to utilize their exclusive advantages.

4) Enhancing prompt engineering practices to maximize

the effectiveness of LLMs in testing scenarios.

For testing professionals, the most successful adaptation

strategy will involve embracing LLMs as collaborative tools

while developing higher-level strategic and creative skills

that complement rather than compete with automated

capabilities. Organizations should approach LLM integration

as an opportunity to enhance testing effectiveness rather than

merely as a cost-reduction measure. The integration of LLMs

in testing will also necessitate the development of new

governance frameworks and ethical guidelines as

AI-augmented testing becomes more prevalent. Testing

teams should anticipate evolving skill requirements, with an

increased emphasis on prompt design expertise and AI

literacy becoming essential competencies. Additionally, as

LLMs continue to advance, we may witness the emergence of

specialized testing LLMs that are fine-tuned for specific

industries or testing domains, offering unprecedented

precision in detecting domain-specific defects. Organizations

that successfully navigate this transition will likely establish

centers of excellence dedicated to AI-augmented testing

practices, creating competitive advantages through superior

quality assurance capabilities and reduced time-to-market.

In summary, although LLMs significantly disrupt

traditional software testing methods and roles, they should be

regarded as transformative tools that reshape rather than fully

replace human involvement. The future of software quality

assurance will likely depend on successful human-AI

collaboration that leverages the complementary strengths of

both humans and artificial intelligence to achieve superior

software quality outcomes.

REFERENCES

[1] Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., &

Wang, Q. (2024). Software Testing with Large

Language Models: Survey, Landscape, and Vision.

IEEE Transactions on Software Engineering, 50(4),

911-929.

[2] Alagarsamy, K., Fraser, G., & Arcuri, A. (2023).

A3Test: Assertion-Augmented Automated Test Case

Generation. IEEE/ACM International Conference on

Automated Software Engineering.

[3] Liu, Y., Zhang, Y., & Sun, Z. (2023). Make LLM for

Test Script Generation and Migration: Challenges,

Capabilities, and Opportunities. IEEE/ACM

International Conference on Automated Software

Engineering.

[4] Deng, L., Feng, L., & Jiang, S. (2023). Large

Language Models are Edge-Case Generators:

Crafting Unusual Programs for Fuzzing Deep

Learning Libraries. Proceedings of the 32nd ACM

SIGSOFT International Symposium on Software

Testing and Analysis.

[5] Bui, D., Shin, H., & Kim, K. (2022).

Detect-Localize-Repair: A Unified Framework for

Learning to Debug with CodeT5. Proceedings of the

30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of

Software Engineering.

[6] Chen, Z., Tufano, M., & Sharma, A. (2023). Teaching

Large Language Models to Self- Debug. IEEE/ACM

International Conference on Software Engineering.

[7] Yuan, X., He, R., Feng, Y., & Shao, Y. (2023). No

More Manual Tests? Evaluating and Improving

ChatGPT for Unit Test Generation. Proceedings of

the 31st ACM Joint European Software Engineering

Conference and Symposium on the Foundations of

Software Engineering.

[8] Nashid, N., Ahmed, I., & Ray, B. (2023).

Retrieval-Based Prompt Selection for Code- Related

Few-Shot Learning. IEEE/ACM International

Conference on Software Engineering.

