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Abstract— The adoption of Large Language Models (LLMs) in software quality assurance is driving significant changes in testing 

practices and professional roles. This paper explores the current applications of LLMs in test case generation, bug analysis, and 

program repair, assessing their technical performance and impact on human testers. While LLMs can automate 40-55% of routine 

testing tasks, they serve best as augmentative tools rather than full replacements. As software testing shifts toward strategic 

oversight, professionals must develop AI literacy and prompt engineering skills. This study provides both theoretical insights and 

practical implementations to support the integration of LLMs in quality assurance. 

 

Index Terms— Large Language Models, System Testing, Test Case Generation, Unit Testing. 

 

I. INTRODUCTION 

Software Quality Assurance (QA) and testing are essential 

aspects of the software development lifecycle, responsible 

for ensuring applications adhere to quality standards prior to 

their deployment. In recent years, advancements in artificial 

intelligence (AI) have significantly transformed various 

industries, with software development and testing being 

particularly impacted by these innovative technologies. The 

adoption of advanced AI systems, which possess the 

capability to learn, adapt, and perform intricate testing 

scenarios, is fundamentally altering the field of software 

quality management. This shift challenges traditional 

methods and creates substantial opportunities as well as 

disruptions for professionals working in this area. 

Historically, software testing has followed a structured 

process of verification and validation, including manual 

testing, automated script execution, performance evaluations, 

and compliance checks. Over time, the skill sets required 

from QA specialists have evolved significantly. Today's 

successful QA professionals are expected to have expertise in 

programming languages, system architecture concepts, 

database technologies, and specialized testing frameworks. 

Additionally, beyond technical proficiency, effective quality 

engineers typically exhibit strong analytical skills, clear 

communication abilities, and critical thinking capabilities. 

The emergence of Large Language Models (LLMs) like 

ChatGPT, Codex, and GPT-4 has introduced new capabilities 

that extend beyond traditional automation approaches. 

Unlike conventional test automation, which executes 

predefined scripts according to programmed instructions, 

AI-enhanced testing systems can demonstrate adaptive 

behaviors, pattern recognition capabilities, and 

self-optimizing characteristics that more closely emulate 

human cognitive processes. These technologies leverage 

various AI disciplines including machine learning, natural 

language processing, computer vision, and predictive 

analytics to transform how quality verification activities are 

conceptualized and implemented. 

II. LITERATURE REVIEW 

A. Evolution of LLMs in Software Testing 

The application of Large Language Models in software 

testing has experienced exponential growth, with research 

publications increasing from 11 papers in 2020 to an 

impressive 109 papers in 2024 (according to scopus). This 

surge represents the rapidly evolving landscape of 

AI-powered testing methodologies and their increasing 

adoption within both academic research and industry 

practice. Analysis reveals that LLMs have been effectively 

employed in both the mid to late stages of the software testing 

lifecycle, with significant applications in test case 

preparation, bug analysis, debugging, and program repair [1]. 

The adaptation of LLMs for software testing has 

undergone several evolutionary phases. Early approaches 

primarily utilized pre-training or fine-tuning schemas to 

prepare models for specific testing tasks. For instance, 

pre-trained LLMs with focal methods and asserted statements 

were used to enable stronger foundational knowledge of 

assertions, then were fine-tuned for test case generation [2]. 

With the advancement of more sophisticated models like 

GPT-4 and ChatGPT, researchers shifted toward prompt 

engineering approaches, using zero-shot and few-shot 

learning strategies to guide LLMs without the need for 

specialized training. 

B. LLM Application in Testing Tasks 

1) Unit Test Case Generation 

Traditional unit test generation techniques leverage 

search-based, constraint-based, or random-based strategies to 

generate test suites with the primary goal of maximizing 

coverage. However, the coverage and meaningfulness of 

traditionally generated tests often fall short of requirements. 

Recent advancements in AI-powered testing have introduced 

several approaches using LLMs for generating more effective 
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unit test cases. 

Performance varies significantly across different datasets 

and models. On the HumanEval benchmark, Codex achieved 

78% correctness with high coverage (87% line coverage, 

92% branch coverage), while on the more complex SF110 

benchmark with real-world projects, LLMs demonstrated 

considerably lower performance (2% coverage). This 

disparity highlights both the potential and limitations of 

current LLM applications in unit test generation. 

2) Test Oracle Generation 

Test oracles, particularly test assertions, represent a critical 

component distinguishing unit test cases from regular code. 

AI approaches for generating effective test assertions have 

evolved significantly, from early pre-training and fine-tuning 

schemas to more recent prompt engineering techniques. The 

performance has improved from 17% exact match rates with 

early RNN-based approaches to 76% with modern 

LLM-based methods that automatically retrieve code 

demonstrations similar to the task at hand. 

3) System Test Input Generation 

LLMs have been applied to generate system test inputs 

across various software types, with particular emphasis on 

mobile applications, deep learning libraries, compilers, and 

SMT solvers. For mobile app testing, LLMs were used to 

intelligently generate semantic input text according to GUI 

context and formulated mobile GUI testing as a Q&A task 

[3]. For testing deep learning libraries, both generative and 

infilling LLMs were usde to generate and mutate 

valid/diverse input DL programs for fuzzing [4]. 

4) Bug Analysis and Debugging 

AI-powered approaches for bug analysis and debugging 

include unified debugging frameworks, self-debugging 

systems, and bug reproduction tools. A unified 

Detect-Localize-Repair framework based on LLMs was used 

for debugging, which determines whether code snippets are 

buggy, identifies buggy lines, and translates buggy code to 

fixed versions [5]. Also, self-debugging can teach LLMs to 

perform rubber duck debugging, identifying mistakes by 

investigating execution results without human feedback [6]. 

5) Program Repair 

Program repair represents one of the most extensively 

studied areas for applying AI to software testing. Approaches 

range from single-line bug repairs to multiple-line bug 

repairs involving complex semantic understanding and 

program refactoring. Performance varies significantly across 

different benchmarks and models, with success rates ranging 

from 22% to 97.5% for simpler bugs but dropping 

significantly for complex programs involving multiple 

dependencies and functionalities. 

 

C. Impact on Testing Roles 

The integration of Large Language Models (LLMs) into 

software quality assurance is significantly reshaping 

workforce demands, job roles, and the skills necessary within 

the field. Research indicates that while certain testing 

jobs—especially those involving routine, repetitive 

tasks—are at higher risk of disruption, roles requiring 

emotional intelligence, creativity, and strategic insight are 

less likely to be fully automated. 

This shift in skills goes beyond merely technical expertise; 

it also involves fundamental changes in work practices and 

cognitive approaches. As LLMs increasingly handle tasks 

related to defect detection and test execution, human QA 

engineers will need to shift their focus towards strategic 

quality planning, exploratory testing that leverages creative 

thinking, ethical management of automated systems, and 

advocating for quality within development teams. 

Simultaneously, new specialized roles are emerging that 

concentrate on developing, implementing, and managing 

AI-driven testing frameworks. Economically, these 

transformations have uneven impacts across the QA 

profession—routine testing activities face downward wage 

pressure and potential job consolidation, whereas specialized 

positions focused on AI implementation and strategic quality 

management are experiencing growing demand and higher 

compensation. 

III. SYSTEM DESIGN 

A. Impact on Human Effort Reduction 

Table Ⅰ: Impact on Human Effort Reduction 

Testing Activity 

Estimated 

Human Effort 

Reduction 

Key Factors 

Unit Test Generation 60-75% 

High accuracy for 

standard methods; 

still requires human 

review for complex 

logic and 

domain-specific 

validations 

Test Oracle 

Generation 
50-65% 

Good at standard 

assertions but may 

miss subtle business 

rules 

System Test Input 

Generation 
40-60% 

Effective for 

generating diverse 

inputs but may not 

fully understand 

complex domain 

constraints 

Bug Analysis 30-50% 

Can quickly identify 

common issues but 

may struggle with 

complex, 

interconnected bugs 
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Testing Activity 

Estimated 

Human Effort 

Reduction 

Key Factors 

Program Repair 25-45% 

Capable of fixing 

simple to moderate 

bugs; complex bugs 

still require 

significant human 

expertise 

Test Scenario 

Generaion 
45-65% 

Strong at extracting 

scenarios from 

requirements but 

may miss implicit 

requirements 

B. Automated Unit Test Generation with LLMs 

 
Fig. 1. Automated Unit Test Generation with LLMs 

C. Automated Bug Analysis and Repair 

 
Fig. 2. Automated Bug Analysis and Repair 

The combined implementation of these LLM-based testing 

tools could reduce total human effort in the testing lifecycle 

by approximately 40-55%. This estimate is based on the 

current capabilities of state-of-the-art LLMs and the specific 

implementations demonstrated in this paper. 

It's important to note that these reductions represent the 

automation of routine aspects of testing rather than the 

complete replacement of human testers. The most effective 

application of LLMs in software testing appears to be in a 

collaborative human-AI paradigm, where LLMs handle 

repetitive tasks while human testers focus on more complex, 

strategic, and creative aspects of quality assurance. It's worth 

emphasizing that these efficiency percentages vary 

significantly across different domains and application 

contexts. For example, web application testing shows higher 

automation potential (approaching the upper bounds of the 

estimates) compared to embedded systems or safety-critical 

applications, where LLM efficacy remains more limited.  

The primary basis for these percentages comes from 

analyzing the performance metrics reported in the surveyed 

literature. For example: 
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1) For Unit Test Generation (60-75%), the percentages 

reflect findings from studies report correctness rates 

between 41% and 78% on different benchmarks, and 

coverage rates of 87-92% for standard methods, but 

significantly lower (2%) for complex real-world 

applications [7]. 

2) For Test Oracle Generation (50-65%), these 

estimates were informed by studies showing 

improvement from 17% exact match rates in early 

approaches to 76% in recent LLM-based techniques 

[8]. 

3) For Program Repair (25-45%), the ranges align with 

findings from studies that showed success rates ranging 

from 22% on complex datasets to 97.5% on simpler 

benchmarks (as summarized in the literature review 

section). 

D. Analysis of Implementation Complexity  

The code demonstrations provided in the paper illustrate 

the complexity of implementing these LLM-based testing 

tools. By analyzing what aspects of each testing task can be 

fully automated versus what still requires human 

intervention, we can estimate effort reduction: 

1) The LLMTestGenerator class demonstrates that while 

test generation can be automated, the validation and 

correction of generated tests still require human 

expertise, supporting the 60-75% estimate. 

2) The LLMBugRepair implementation shows that 

simple to moderate bugs can be identified and fixed 

automatically, but complex bugs with interconnected 

dependencies would still require human intervention, 

supporting the 25-45% estimate.  

E. Domain Expert Insights 

The percentages also reflect typical industry patterns 

where: 

1) Routine, well-defined tasks see higher automation 

potential (hence unit test generation at 60-75%) 

2) Tasks requiring domain understanding or complex 

reasoning show lower automation potential (hence 

program repair at 25-45%) 

IV. CONCLUSION 

This research has examined the impact of Large Language 

Models on software quality assurance and testing, revealing a 

technological shift that is redefining both testing practices 

and professional roles. Our analysis of current literature and 

practical implementations leads to several key conclusions: 

A. Technical Capabilities and Limitations 

LLMs have demonstrated significant capabilities in 

automating routine testing tasks, particularly in unit test 

generation, test oracle creation, system test input generation, 

bug analysis, and program repair. Performance varies across 

tasks and datasets, with LLMs showing impressive results on 

benchmark datasets (e.g., 78% correctness with 87-92% 

coverage on HumanEval) but struggling with complex 

real-world applications (e.g., 2% coverage on SF110). 

The technical limitations of current LLM applications 

include: 

1) Coverage limitations: Current approaches struggle to 

achieve comprehensive coverage, particularly for 

complex, real-world software systems with numerous 

dependencies. 

2) Test oracle problem: Despite advancements, generating 

accurate test oracles remains challenging, especially 

for complex behaviors. 

3) Real-world application: The performance gap between 

benchmark datasets and complex real-world 

applications indicates challenges in practical 

implementation. 

B. Impact on Testing Roles 

The integration of LLMs into software testing workflows 

is transforming the profession in several  

ways:  

1) Role Transformation: Testing roles are shifting from 

execution-focused activities to more strategic, creative, 

and oversight responsibilities. Routine testing positions 

focused on manual execution are experiencing the most 

immediate disruption, while roles requiring strategic 

thinking and domain expertise remain less affected. 

2) Skills Evolution: Testing professionals need to develop 

hybrid skill sets that combine traditional quality 

assurance knowledge with AI literacy, prompt 

engineering capabilities, and strategic thinking. The 

ability to collaborate effectively with AI systems is 

becoming a valuable professional asset.  

3) Economic implications: These transformations 

manifest unevenly across different segments of the 

quality assurance profession, with routine testing 

activities experiencing wage pressure and position 

consolidation, while specialized roles in test 

architecture, implementation, and quality strategy 

command increasing premiums. 

C. Future Outlook 

The interaction between Large Language Models (LLMs) 

ans human testers is expected to evolve into a collaborative 

affiliation rather than a complete replacement. LLMs 

demonstrate exceptional proficiency in automating repetitive 

and pattern-driven testing tasks, whereas human testers 

contribute essential creativity, contextual insights, and 

strategic analysis required for thorough software quality 

assurance. 

Future advancements in this domain are expected to 

include:  

1) Investigating the application of LLMs during early 
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stages of the   testing lifecycle. 

2) Developing advanced techniques for addressing 

non-functional testing requirements. 

3) Combining LLM capabilities with traditional testing 

methods to utilize their exclusive advantages. 

4) Enhancing prompt engineering practices to maximize 

the effectiveness of LLMs in testing scenarios.  

For testing professionals, the most successful adaptation 

strategy will involve embracing LLMs as collaborative tools 

while developing higher-level strategic and creative skills 

that complement rather than compete with automated 

capabilities. Organizations should approach LLM integration 

as an opportunity to enhance testing effectiveness rather than 

merely as a cost-reduction measure. The integration of LLMs 

in testing will also necessitate the development of new 

governance frameworks and ethical guidelines as 

AI-augmented testing becomes more prevalent. Testing 

teams should anticipate evolving skill requirements, with an 

increased emphasis on prompt design expertise and AI 

literacy becoming essential competencies. Additionally, as 

LLMs continue to advance, we may witness the emergence of 

specialized testing LLMs that are fine-tuned for specific 

industries or testing domains, offering unprecedented 

precision in detecting domain-specific defects. Organizations 

that successfully navigate this transition will likely establish 

centers of excellence dedicated to AI-augmented testing 

practices, creating competitive advantages through superior 

quality assurance capabilities and reduced time-to-market. 

In summary, although LLMs significantly disrupt 

traditional software testing methods and roles, they should be 

regarded as transformative tools that reshape rather than fully 

replace human involvement. The future of software quality 

assurance will likely depend on successful human-AI 

collaboration that leverages the complementary strengths of 

both humans and artificial intelligence to achieve superior 

software quality outcomes. 
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